

CIRCHTT, A CIRCULAR RNA FROM THE HUNTINGTON'S DISEASE GENE LOCUS: FUNCTIONAL CHARACTERIZATION AND POSSIBLE IMPLICATIONS FOR DISEASE MODULATION

Jessica Döring¹, Simone Ferrari¹, Alan Monziani¹, Claudio Oss Pegorar¹, Takshashila Tripathi¹, Francesca Di Leva¹, Emanuela Kerschbamer¹, Virginia B. Mattis², Christoph Dieterich³, Erik Dassi⁴, Vanessa C. Wheeler⁵, Hana Hansíková⁶, Zdenka Ellederová⁷, Jeremy E. Wilusz⁸, Marta Biagioli¹

¹ NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento (ITALY)

² The Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Sciences, Cedars-Sinai

Medical Center, Los Angeles, CA 90048, (U.S.A.)

³ Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg (GERMANY)

⁴ Computational biology laboratory, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento (ITALY)

⁵ Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114, USA; Department of Neurology,

Harvard Medical School, Boston, MA 02115, USA, Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston (U.S.A.)

⁶ Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague (CZECH REPUBLIC)

⁷ Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov (CZECH REPUBLIC)

⁸ Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia (U.S.A.)

NeuroEpigenetics Lab

This work was supported by NeuroEpigenetics Lab @CIBIO

Advancing Research, Conducting Trials, Improving Care

Introduction: identification of a circular RNA from the *HTT* locus

We identified the first ever known circular RNA (circRNA) originating from the *HTT* locus (Circ*HTT*: 484 nt, Exons 2-6, chr4:3088665-3109150) (circBASE). Circ*HTT* orthologues were found in mouse (circ*Htt*) and minipig, suggesting a possible conserved function. However, circ*HTT*s role and implication for HD pathogenesis are not known yet. Here, we present its expression pattern in human and mouse body districts and in iPS-derived neuronal cell lines with different CAG repeats. Furthermore, we show that overexpression of the circle might modulate wild-type and mutant huntingtin expression. Our observations unveil **a new piece of HD biology/pathology** and might pave the way for future studies of innovative avenues for therapeutic intervention.

Figure 1. circ*HTT* **identification from human circRNA-seq database.** Long introns (> 7500 bp), here in red, and the presence of interspersed repeats – calculated with RepeatMasker tool – are known hallmarks for circular RNAs biogenesis. CircBASE tracks depict the annotated circular RNAs stemming from the *HTT* locus.

CircHTT detection and *proof-of-circularity*

Figure 2. circ*HTT* **detection in human cell lines and** *proof-of-circularity.* **A.** The schematic drawing is showing divergent primers, producing an amplicon, spanning the unique backsplice junction (bottom). **B.** End-Point RT-PCR experiments show amplification of circ*HTT* in human iPS-derived NPC (8330-8) and human neuroblastoma cell lines (SH-SY5Y). **C-D.** All circ*HTT* amplicons are specific, correctly spanning the backsplicing junction as confirmed by Sanger sequencing. Backsplice junction is marked in yellow and underlined]. **E-F.** Following RNase R treatment, equal amounts of treated and untreated RNA samples were subjected to RT-PCR. Images report PCR amplified bands of linear RNAs (*ACTB, GAPDH, TBP*) and circular RNAs (*cirS-7* and *circHIPK3*), as well as circ*HTT* (E, bottom). While linear RNA are depleted in RNase R treated (+) conditions (Fig. E, top panel), circRNAs show an enrichment. (F) The bar graph reports amplicon RT-PCR bands quantification by Image Lab, and the conditions presenting the highest intensities were used as normalizers (F).

Results 1. circHTT/Htt is mainly expressed in CNS in both human and mouse

Figure 3. Circ*HTT/Htt* expression in different human and mouse tissues. To explore circ*HTT/Htt* expression profile in different human and mouse tissues, human RNA tissues panel were purchased from Clontech and RNA extracted from a panel of tissues were used. Here, we report that circ*HTT/Htt* is expressed within all analyzed body districts, with higher levels within CNS (whole brain, cerebellum and spinal cord) and heart. **A.** Interestingly, the levels dramatically drop in fetal compared to adult brain in human. **B.** In agreement with human data, circ*Htt* is predominantly expressed in brain and cerebellum, while it is lowly expressed in the rest of the analyzed body district.

Results 2. circHTT expression increases with increasing CAG repeats in human terminally differentiated neurons

Figure 4. circ*HTT* **expression in iPS-derived neuronal cell lines with elongated CAG sizes.** To determine whether circ*HTT*'s expression occurs in a CAG repeat dependent manner in iPS-derived neuronal cell lines, thanks to a collaboration with Dr. Virginia B. Mattis (Department of Biomedical Sciences, Cedars-Sinai Hospital, Los Angeles, USA), we obtained two sets of hiPSCs-derived neural progenitor cells (hNPCs) as well as three independent collections of terminally-differentiated neurons (hTDNs) carrying different polyglutamine tracts in one single *HTT* allele, ranging from wild type (CAGs < 36) to very juvenile forms of the disease (CAGs > 100). **A.** We demonstrate that circ*HTT* is expression in PS-derived neuronal cell lines [neural progenitors (NPC) and terminal differentiated cortical neurons (hTDN)]. The levels of circ*HTT* expression in hTDN are elevated compared to NPC. B. circ*HTT* expression increases with the number of CAG repeats in HD patients iPSCs-derived terminally-differentiated neurons. A significant correlation between circ*HTT* expression and CAG repeats size is detected within hTDNs is shown.

Results 3. circHtt is significantly more expressed in brain districts of Q111 and zQ175 knock-in mice

Figure 5. Circ*Htt* expression in wild-type and mutant mouse brains. To investigate the levels of expression of circ*Htt* in brain districts of different HDmimicking animals, wild-type, knock-in C57BL/6J Q20, Q111, and zQ175 mice were used as ideal model systems. Striatal tissues of Q20 and Q111 mice were kindly provided by Dr. Wheeler Vanessa C. (Massachusetts General Hospital, Boston, USA). **A.** CircHtt expression levels are significantly higher in mutant striatum (Q175) than in wild-type striatum (Q7) at both 2 and 6 months old stages. **B.** Similarly, circHtt cortical levels were higher in mutant than in wildtype mice at 6 months. **C.** Additional experiments comparing Q20 and Q111 mouse striatum at 2 months indicated a significantly higher expression of circHtt in mutant mice.

Results 4. circHTT/Htt overexpression affects huntingtin protein levels, with no alteration of the HTT/Htt mRNA

HEK293T

STHdh 7/7

Figure 6. Effects of circ*HTT/circHtt* overexpression in HEK293T, PC3, and ST*Hdh* Q7/7 cells. To characterize the function of circ*HTT/circHtt*, the circular RNA was overexpressed in human and mouse cell lines by cloning its sequence into the ZKSCAN1 MCS Exon vector (Addgene #69901), kindly provided by Prof. Jeremy E. Wilusz. Cells were transfected with the ZKSCAN1-circ*HTT/Htt* or the ZKSCAN1 MCS vector, as control. HEK293T (left panel), PC3 (middle panel), and mouse striatal cell line mST*Hdh* Q7/7 (right panel) were used. We show that circ*HTT/circHtt* overexpression in human and mouse cells increases wild-type huntingtin protein levels with no alteration of the endogenous *HTT/Htt* linear transcript.

Results 5. circHtt overexpression affects huntingtin protein levels, with no alteration of the Htt mRNA

Figure 7. Effects of circ*Htt* overexpression in monoclonal ST*Hdh* **Q7/7**, **Q7/111**, and **Q111/111 cell lines**. To characterize the function of circ*Htt*, the circular RNA was overexpressed in mouse striatal cell lines (mST*Hdh* Q7/7, Q7/111, and Q111/111) expressing wild type (Q7/7), heterozygous (Q7/11), and homozygous mutant (Q111/111) by cloning its sequence into the ZKSCAN1 MCS Exon vector (Addgene #69901), kindly provided by Prof. Jeremy E. Wilusz. Cells were transfected with the ZKSCAN1-circ*HTT/Htt* or the ZKSCAN1 MCS vector, as control. In order to produce a more controlled and homogenous system in mST*Hdh*, we plated single-cells in 96-wells to obtain monoclonal cell lines. **Apparently, overexpression of the circular RNA might increase wild-type huntingtin, while decreasing mutant huntingtin protein, with no alteration of the** *Htt* **transcript level.**

Conclusion

We identified a **circular RNA** stemming from the *HTT* locus that is expressed in a **CAG repeat dependent manner in brain districts and neurons,** typical hallmark of HD pathology. We suggest that circ*HTT/Htt* might modulate wild-type and mutant huntingtin translation without affecting the transcription. These observations will pave the way for future studies of innovative avenues for therapeutic intervention to treat Huntington's Disease.

Acknowledgements

NeuroEpigenetics Laboratory

Advancing Research, Conducting Trials, Improving Care