

ASSESSMENT OF MUSCLE REGENERATION IN THE R6/2 MOUSE MODEL OF HUNTINGTON'S DISEASE

Sanzana Hoque¹, Rana Soylu-Kucharz¹, Valérie Allamand², Marie Sjögren¹, Kinga Gawlik², Naomi Franke¹, Johannes Lundin¹, Åsa Petersén³, Madeleine Durbeej-Hjalt² & Maria Björkqvist¹

- 1. Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department Of Experimental Medical Sciences, Lund University, Lund, Sweden
- 2. Muscle Biology Unit, Department Of Experimental Medical Sciences, Lund University, Lund, Sweden
- 3. Translational Neuroendocrinology, Department Of Experimental Medical Sciences, Bmcd11, Lund University, Lund, Sweden

Van der Burg, J. M., Bjorkqvist, M. & Brundin, P, *The Lancet. Neurology*(2009) Ribchester, R. R. *et al. The Euro. J. of neuroscience* (2004)

Purpose of the project

Using an acute injury model, we aimed to investigate the effect of

mutant HTT expression on satellite cell regeneration capacity in the

R6/2 mouse model

Methods and Materials

Cardiotoxin (CTX)

- A snake derived cytolytic toxin
- An ideal acute injury model
- Induce skeletal muscle regeneration

Garry, G.A.et al. Methods Mol. Biol. (2016) Guardiola O. et al. J. Vis. Exp. (2016)

Animal groups to assess muscle pathology:

Adult: 18 weeks and neonates: 1 week

Immunohistochemistry	CTX injected animal groups
Laminin	4 weeks post injection
Embryonic myosin heavy chain (eMHC)	1 week post injection

 Cardiotoxin (CTX) injections in Tibialis anterior (TA) muscle

<u>Right TA:</u> Saline (30µl)

<u>Left TA: CTX (5µg</u> <u>CTX delivered in</u> <u>30µl_volume)</u>

> Picture taken from Shinin, Vasily et al (2009)

<u>Results</u>

Skeletal muscle pathology in adult R6/2 mouse model

Unpublished data

Skeletal muscle pathology in neonate R6/2 mouse model

R6/2 neonates exhibits reduced body weight and fiber diameter

C Gastrocnemius muscle (1 week old) H&E

Unpublished data

Skeletal muscle morphology in R6/2 and WT mice

Reduced fiber diameter in R6/2 compared to WT muscle

Fiber area and minimum ferret diameter in WT and R6/2 mice

Tendency to increase in fiber area and diameter in R6/2 CTX group compared to their saline group

A trend towards increased eMHC

positive cells in R6/2 compared to WT

Summary

- Both adult and neonatal R6/2 mice exhibited reduced body weight
- In H&E staining, we observed prominent gap and pattern between fibers in both adult and neonatal R6/2 muscle compared to WT muscle.
- Fiber areas were unchanged in WT mice after cardiotoxin injection but tendency to increase in R6/2 mice
- Tendency to increase in myosin heavy chain positive cell in R6/2 mice

R6/2 skeletal muscle may have the ability to regenerate new fibers

Skeletal muscle regeneration in R6/2 mice

