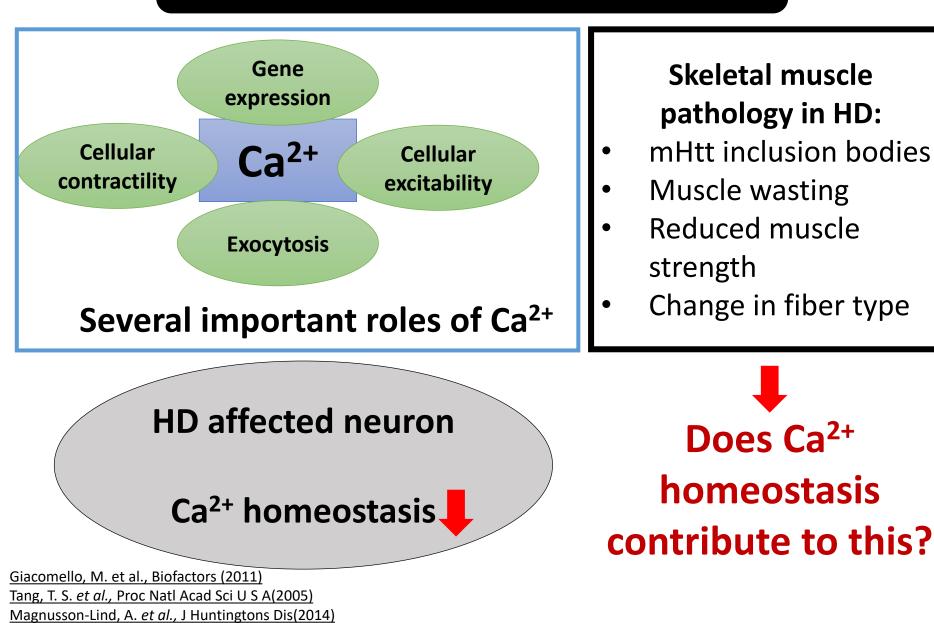

# ASSESSMENT OF SATELLITE PROGENITOR CELL DIFFERENTIATION IN HD SKELETAL MUSCLE IN VITRO

Sanzana Hoque<sup>1</sup>, Krzysztof Kucharz<sup>2</sup>, Marie Sjögren<sup>1</sup>, Andreas Neueder <sup>3</sup>, Michael Orth<sup>3</sup>, Maria Björkqvist<sup>1</sup>, Rana Soylu-Kucharz<sup>1</sup>


- 1. Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department Of Experimental Medical Sciences, Lund University, Lund, Sweden
- 2. Department Of Neuroscience And Pharmacology, University Of Copenhagen, Copenhagen, Denmark
- 3. Department Of Neurology, University Of Ulm, Ulm, Germany

### **Background**

#### Satellite progenitors and skeletal muscle



#### Intracellular Calcium and HD pathology



## **Ghrelin- A hunger hormone**

- Regulate energy metabolism
- Improve brain function and neuronal survival
- Improve HD skeletal muscle morphology
- Induce Ca<sup>2+</sup> mobilization

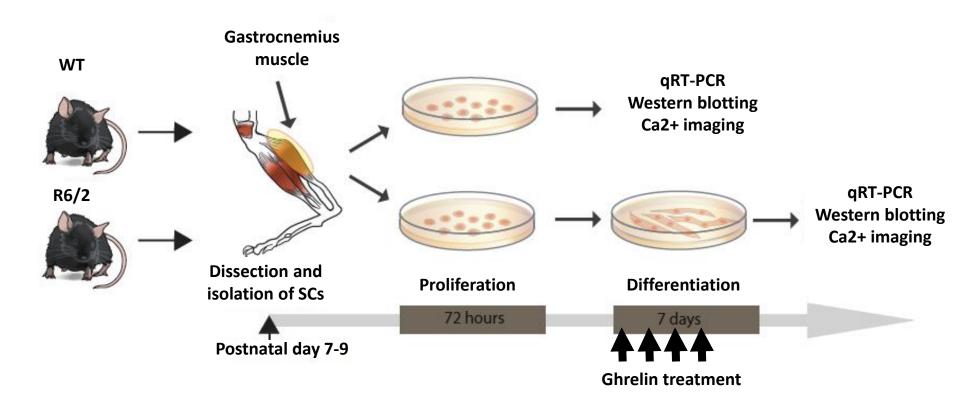
#### We aim to-

- Establish an novel Ca<sup>2+</sup> imaging analysis
- Characterize intracellular Ca<sup>2+</sup> in R6/2 mouse muscle and HD patient myoblasts
- Assess the ameliorating effect of ghrelin on Ca<sup>2+</sup> dynamics in myofibers



OPEN Ghrelin rescues skeletal muscle catabolic profile in the R6/2 mouse model of Huntington's disease

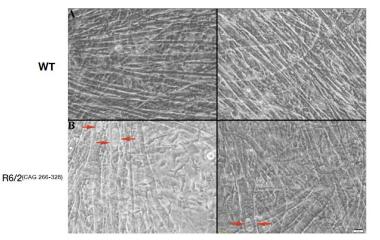
Received 6 July 2017 Marie Sjägren<sup>1</sup>, Ana I. Duarte<sup>1,2,3</sup>, Andrew C. McCourt<sup>1</sup>, Liliya Shcherbina<sup>1</sup>, Nils Wierup<sup>1</sup> & Accepted: 27 September 2017 Maria Björkqvist<sup>1</sup> Maria Björkqvist<sup>1</sup>

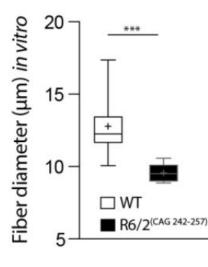

| Received: 13 November 2018 | Revised: 17 January 2019 | Accepted: 14 February 2019 |                 |
|----------------------------|--------------------------|----------------------------|-----------------|
| DOI: 10.1111/jne.12699     |                          |                            |                 |
| ORIGINAL ARTICI            | E                        |                            | WILEY Iterat of |

Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease

Olga Rudenko<sup>1,2</sup> | Cecilie Springer<sup>1,2</sup> | Louisa J. Skov<sup>1,2</sup> | Andreas N. Madsen<sup>1,2</sup> | Lis Hasholt<sup>3</sup> | Anne Nørremølle<sup>3</sup> | Birgitte Holst<sup>1,2</sup>

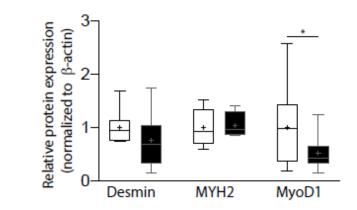
### **Methods**

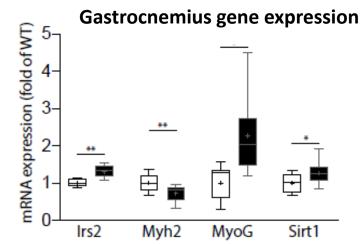

### Satellite cell (SC) isolation




#### **Results**

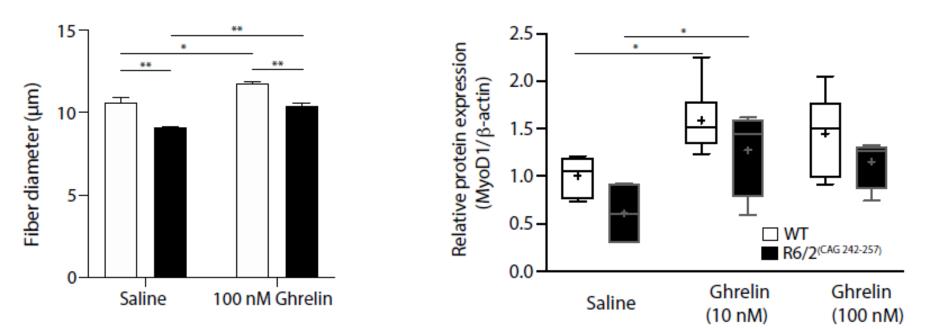
#### R6/2 mice exhibit reduced myofiber diameter and MyoD expression level


#### 8<sup>th</sup> day of differentiation






#### Gastrocnemius



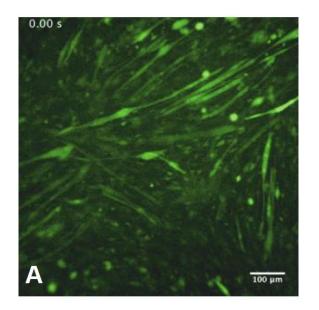




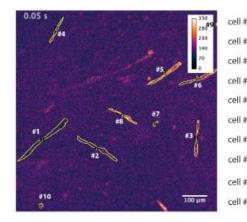

Ghrelin treatment in vitro

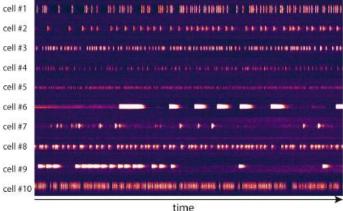
MyoD1 protein levels in vitro




#### **Summary**

#### From our preliminary data, R6/2 mice exhibit:


- Reduced myofiber diameter compared to their WT littermates
- Altered gastrocnemius gene expression
- Reduced myoD expression level


**Treatment with Ghrelin may delay muscle atrophy by i**ncreasing myofiber diameter and improving MyoD expression level

### **Ongoing- Ca2+ imaging in vitro**



#### Cell calcium pattern in time domain





#### This can be correlated with shape descriptors:

The myofibers from WT mice are imaged using Fluo-4 AM calcium indicator at 7th day of differentiation

|          | Area [um] | Perim.[um] | Circ. | Feret [um] | FeretX [um] | FeretY [um] | MinFeret | AR |        | Round | Solidity |
|----------|-----------|------------|-------|------------|-------------|-------------|----------|----|--------|-------|----------|
| Cell #1  | 3114.004  | 549.345    | 0.13  | 256.609    | 6.217       | 595.295     | 24.619   |    | 15.439 | 0.065 | 0.611    |
| Cell #2  | 1831.199  | 399.26     | 0.144 | 187.162    | 239.361     | 494.265     | 23.568   |    | 12.282 | 0.081 | 0.564    |
| Cell #3  | 975.995   | 311.625    | 0.126 | 142.131    | 707.204     | 575.089     | 14.376   |    | 14.343 | 0.07  | 0.632    |
| Cell #4  | 659.521   | 241.142    | 0.143 | 114.902    | 129.006     | 124.344     | 11.175   |    | 13.434 | 0.074 | 0.662    |
| Cell #8  | 1304.548  | 343.889    | 0.139 | 155.693    | 520.688     | 290.653     | 15.791   |    | 14.026 | 0.071 | 0.618    |
| Cell #6  | 1362.528  | 335.123    | 0.152 | 158.782    | 645.032     | 293.762     | 18.789   |    | 11.387 | 0.088 | 0.619    |
| Cell #7  | 198.098   | 62.379     | 0.64  | 25.492     | 544.003     | 455.408     | 10.991   |    | 2.543  | 0.393 | 0.863    |
| Cell #8  | 645.026   | 268.862    | 0.112 | 127.272    | 363.705     | 387.019     | 15.646   |    | 10.803 | 0.093 | 0.474    |
| Cell #9  | 91.802    | 41.249     | 0.678 | 15.543     | 784.918     | 62.172      | 9.891    |    | 1.653  | 0.605 | 0.835    |
| Cell #10 | 253.662   | 61.091     | 0.854 | 20.206     | 91.703      | 780.255     | 18.079   |    | 1.035  | 0.966 | 0.913    |

area perimeter max Feret min Feret roundness solidity/roughness