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1. Introduction & Aim

Background
To date, HD patients are classified by the Unified Huntington Disease
Rating Scale (UHDRS), which relies on non-objectively measurable
parameters, thus there is an increasing need to develop and validate
biomarkers in accessible biofluids (such as blood) to either follow
disease progression and/or to predict treatment’s outcome. Such
biomarkers will also be essential in assessing the effectiveness of new
therapeutic treatments.

We focused on circular RNAs (circRNAs), covalently-bound, single-
stranded RNA circles, obtained by backsplicing [1]. CircRNAs could be
valuable biomarkers since (i) they are more stable and resistant to
endonucleases than their linear counterparts; (ii) they are abundant in
the Central Nervous System (CNS) [2]; (iii) they can easily cross the Blood-
Brain Barrier (BBB) [3].

Aim
Here, for the first time in HD, we aim to focus, detect, and characterize blood-derived circRNAs. We 

investigate their potential as new biomarkers that can forecast the onset of motor symptoms as well as 
consistently follow the later stages of HD disease stage and length of the CAG repeat.

Blood Samples
50 blood samples were collected, divided in 2 cohorts: a HD Cohort, composed of 30 individuals affected by 

Huntington at different stages of the disease; a Control Cohort, comprising of 20 healthy, age and sex-
matched individuals. The Blood Samples were provided Prof. Ferdinando Squitieri (Huntington and Rare 

Diseases Unit in Rome). 

This protocol was approved by the appointed ethical committee and all those involved signed a form of 
informed consent.

Control Cohort
20 individuals 

(gender- & age-matched)

HD Cohort
• 10 premanifest stage
• 10 stages I & II (UHDRS)

• 10 stages 3 & over (UHDRS)

circRNA
Detection & characterization

Blood Samples

Fig. 1



Results 1. Sequencing quality control

Principal Component Analysis
Using STAR-generated gene counts, we performed PCA analysis, using the top 500 genes with highest variance
across samples (Fig. 3). A clear separation between Controls (green dots) and the HD group (orange, cyan and
purple triangles).

We first examined the number of read counts for all samples, specifically the reads mapping to unique loci in
the genome, as they are indicative of the quality of the library: 2 samples of the asymptomatic stage (HD26
and HD37) had a number of reads outside of the ‘Mean ± 2SD‘ range, and were removed from downstream
analyses (Fig. 2A). We also examined the chimeric reads, used to detect and quantify circRNAs (Fig. 2B).

Fig. 2BFig. 2A
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Results 2. CircRNA expression is dysregulated in HD patients

          

            

             

By applying the bionformatic pipeline depicted in the diagram [4-6], we evaluated the
overall number of different species of circRNA present in each of the 2 main conditions
(CTRL vs HD). Only circRNAs with a number of counts per sample ≥ 3 in either group were
considered (Fig. 4). As shown in the figure, the control group has a lower average number
of expressed circRNA species when compared to the patient group (whether considered
as a whole – ‘  ’ bar – or stage by stage: asymptomatic, Stage 1&2, Stage 3&4).

Most circRNAs are upregulated in HD patients

Among all the detected circRNA, 88.3% were up-regulated in HD,
while the remaining were down-regulated (Fig. 5).

Fig. 4
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Results 3. Selection of viable circRNAs candidates  

35 differentially expressed circRNA found

CircTest: Control vs HD group differentially expressed circRNA
With CircTest we were able to identify 35 circRNAs whose expression was enriched in HD patients
(as a whole) compared to controls (Fig. 6A). GO and KEGG pathway analysis of the obtained list,
revealed that these genes are predominantly involved to ubiquitination-related pathways (Fig. 6B).

Fig. 6A Fig. 6B

To identify a suitable list of circRNAs
candidates, we intersected the results
from 3 analytical approaches :

1) circRNAs differentially expressed in
HD;

2) circRNAs whose expression
increases with disease progression;

3) circRNA correlated to the CAG
length.

7 circRNA candidates were identified
that satisfied conditions 1) and 2), while
1 satisfied conditions 2) and 3) (Fig. 7).

Chr Start End Gene circRNA ID

X 101041316 101042312 TRMT2B hsa_circ_0001937

16 56385918 56389375 AMFR hsa_circ_0000704

9 93471140 93498886 FAM120A hsa_circ_0001875

15 25650607 25657118 UBE3A hsa_circ_0000586

8 37623043 37623873 PROSC hsa_circ_0001788

5 167915606 167921655 RARS hsa_circ_0001550

Chr Start End Gene circRNA ID

3 170145423 170149244 PHC3 hsa_circ_0001360

Fig. 7
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Results 4. Alternative Splicing Analysis in HD Blood Samples    

GO and KEGG pathway
analysis for the genes
related to the identified
events: here we report the
20 most significant. Most of
the reported terms are
related to RNA processing,
Interferon response and
protein localization. RNA
processing is a well
established process that is
disrupted by mutHTT:
alterations in the
functioning of this pathways
might lead to alterations in
splicing and, possibly, to
backsplicing.

We investigated Alternative Splicing events (AS) that may differ between the HD and Control groups.
Transcripts were first quantified with Kallisto [7] and then the difference in ‘Percentage of Spliced-In’ (dPSI) was
calculated with SUPPA2 [8,9]. 81 splicing events reached significance (P-value < 0.05) with a dPSI above 10% in
the HD group compared to the control. Even if only few events show a significant difference, it is still possible
that one or more of these may be of particular relevance for the disease, thus further analyses concerning this
topic are required.

(Adapted from: Alamancos G.P. et al., 2015)
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Most Differentially Expressed Transcripts are Up-regulated in HD

Transcript counts obtained with Kallisto [10] were used as input for DESeq2 [9].
After the removal of Globin and rRNA transcripts, 287 transcripts resulted
differentially expressed (adjusted P-value < 0.05, |logFC| > 0.5), of which >90%
are enriched in HD.

Results 5. Gene expression in HD Blood Samples 

FASTQC TRIM GALORE KALLISTO DESeq2

Some of the most prominent processes that emerged from the GO and KEGG
pathway analysis for these genes include: ‘intracellular t a s   t’, ‘   
    ess  g’.

We intersected the gene lists obtained from AS, DESeq
and CircTest analyses to verify whether the observed
chnages in As and circRNAs expression could be linked
to differential expression. As evidenced by the Venn
diagrams, the overlaps are really minimal, suggesting
that mutHTT is affecting the AS and backsplicing
processes independently of gene expression changes.

Intersection between AS events, DE 
transcripts and circRNA
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Future Directions

Validation of the circRNA candidates identified by RNA-seq via RT-qPCR assay to detect and

quantify these possible new biomarkers and

1. Segregate HD patients based on the disease stage.

2. Evaluate reproducibility of our findings in a different cohort of patients;

3. Comparison between newly identified biomarkers and the pre-existing ones, 

specifically how they change in relation to mutHTT levels;

4. Evaluate if the candidate behave similarly in the Cerebro Spinal Fluid (CSF) as 

they do in blood.

Specific circRNA amplification will be
achieved through the use of Divergent
Primers.

(Image adapted from Panda A. C. and Gorospe M, “Detection and Analysis of Circular 
RNAs by RT-PCR”, 2018).
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