

Mutation-related apparent myelin, not axon density, drives white matter pathology in premanifest Huntington's disease: Evidence from in vivo ultra-strong gradient MRI

Chiara Casella, Maxime Chamberland, Pedro L Laguna, Greg D Parker, Anne E Rosser, Elizabeth Coulthard, Hugh Rickards, Derek K Jones, Claudia Metzler-Baddeley Department of Psychology, Cardiff University, Metzler-BaddeleyC@cardiff.ac.uk

myelin was positively

associated with CAG

repeat length but not

REFS: [1] Paulsen JS et al. (2008), J Neurol Neurosurg Psychiatry. [2]

Bartzokis et al. (2007), Neurochemical Research. [3] Jones DK et al. (2018),

NeuroImage. [4] Pierpaoli C, Basser PJ (1996), Magn Reson Med. [5] Assaf Y, Basser PJ (2005), Neuroimage. Henkelman, R M, Stanisz, G J, & Graham,

S J (2001), NMR in Biomedicine. Wasserthal J, Neher P, Maier-Hein KH

(2018), NeuroImage. Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014), NeuroImage. Jones DK, Travis AR, Eden G, Pierpaoli C,

Basser PJ (2005), Magn Res Med. Lugue Laguna PA et al. (2019), OHBM.

with DBS.

BACKGROUND. White matter (WM) alterations have been observed early in Huntington's disease (HD) progression [1,2] but their aetiology remains unknown. We exploited ultra-strong-gradient MRI to tease apart contributions of myelin and axon density to WM changes in premanifest HD. Behavioural measures were employed to explore disease-related brain-function relationships.

METHODS: DAT

 Subjection and 2 contr 	ects: 25 p 25 age- & ols:				Segment.
Group	Gender male/ female (%)	Mean age (range)	Mean CAG (range)	Mean DBS (range)	3 4 5 6
HD patients (n = 25)	15(60)/ 10(40)	42.04 (21-70)	41.4 (37-45)	23 5.94 (61.5- 450)	72.
Controls (n = 25)	14(56)/ 11(44)	43.19 (27-71)	-	-	3.

- MRI: 3T Siemens Connectom system with ultra-strong (300 mT/m) gradients [3].
- Diffusion-weighted images were fitted to the DTI and CHARMED diffusion models [4][5] to compute FA, RD, AD and Fr. MTR maps [6] were also computed.
- Tractography of the corpus callosum (CC) performed with TractSeg [7] and multi-shell constrained spherical deconvolution (MSMT-CSD) [8]. Seven portions of the CC were delineated.
- Cognitive and motor assessments: encoding, storage, updating, inhibition, switching, verbal & spatial working memory, motor speed, attention.

METHODS: DATA ANALYSIS.

- PCA extraction of an "axon density" and an "apparent myelin" component from the tractometry data to examine group differences in region-specific WM changes across the CC.
- **3.** Tract-based cluster analysis (TBCA) [10] to explore brain-wise WM abnormalities in premanifest HD.

- **3.** PCA extraction of a composite cognitive score reflecting general executive functioning.
- 4. Spearman correlations between WM PCA

components, cognitive PCA component, CAG repeat length and disease burden score (DBS).

 In-vivo evidence for callosal myelin alterations as an early feature of HD is provided. Such changes might be due to: i. toxic myelin levels because of pathologically-increased CAG size; or ii. homeostatic remyelination in response to mutation-associated myelin breakdown.

CARDIFF

UNIVERSITY PRIFYSGOL

- Outside the CC, other alterations can be detected, likely reflecting **axonal changes**.
- Understanding WM changes in HD may aid discovery of new therapeutic approaches.