

Exploring the feasibility of a novel and efficient trial design for the evaluation of long-term Physical ACtivity and Exercise outcomes in people with Huntington's Disease.

Monica Busse¹, Rebecca Playle¹, Cheney J.G Drew¹, Katie Taiyari¹, Rhys Williams-Thomas¹, Lisa Muratori^{2,3}, Katy Hamana⁴, Beth Ann Griffin⁵, Mark Kelson⁶, Robin Schubert³, Anne Rosser⁷ & Lori Quinn^{1,8 &} the PACE-HD & Enroll-HD principal investigators.

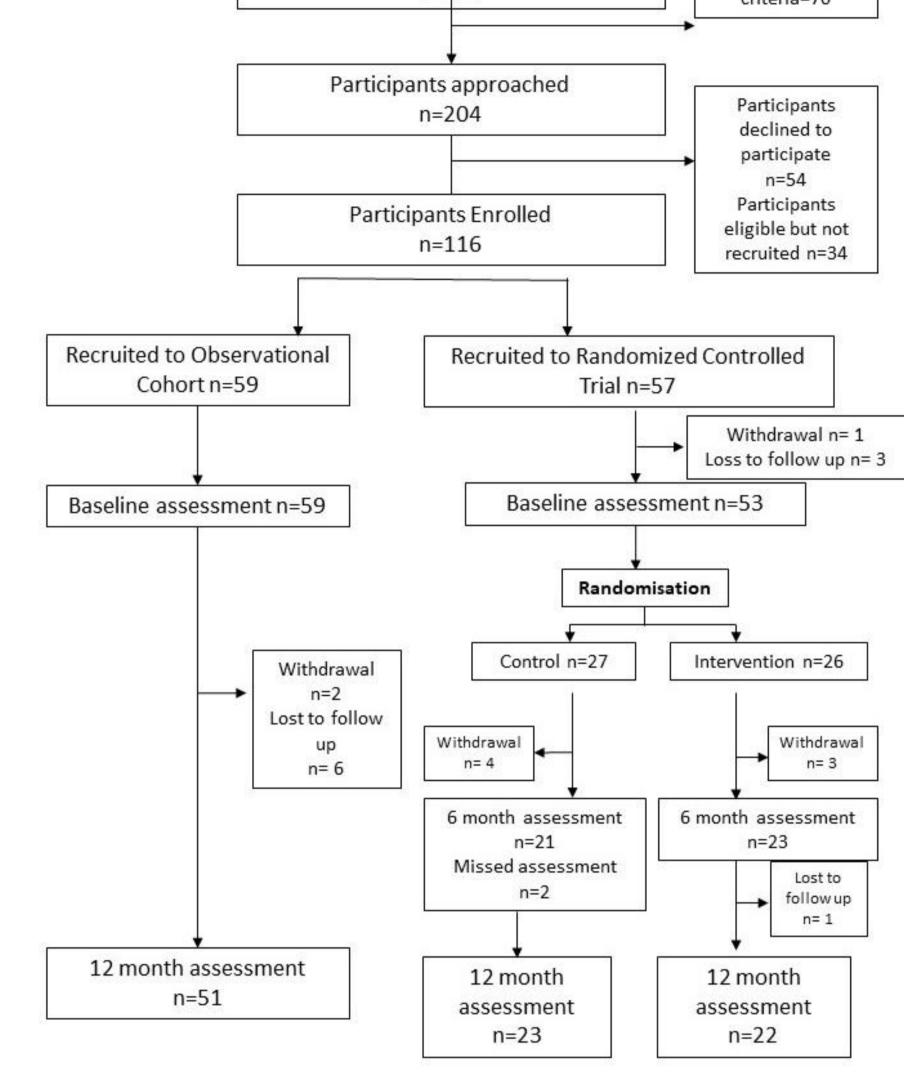
¹Centre for Trials Research, Cardiff University, UK; ²George-Huntington-Institute and Institute for Clinical Radiology, University of Münster, ³Stony Brook, NY, USA; ⁴School of Health Care Sciences, Cardiff University, UK; ⁵RAND Corporation, Arlington, VA, USA; ⁴School of Health Care Sciences, Cardiff University, UK; ⁵RAND Corporation, Arlington, VA, USA; ⁴School of Health Care Sciences, Cardiff University, UK; ⁵RAND Corporation, Arlington, VA, USA; ⁴School of Health Care Sciences, Cardiff University, UK; ⁵RAND Corporation, Arlington, VA, USA; ⁴School of Health Care Sciences, Cardiff University, UK; ⁷Schools of Medicine and Biosciences, Cardiff University; ⁸Teachers College, Columbia University, New York, USA

BACKGROUND

- Evidence of best practice for long term physical activity in Huntington's disease (HD) is poor
- Shorter term interventions (up to 12 weeks) provide support for physical activity in terms of motor function as well as a range of physical and social benefits
- Longer-term multi-disciplinary interventions involving physical and occupational therapy delivered through inpatient settings have reported positive outcomes
- A consultation model (where therapists support community engagement in physical activity over the longer term) requires evaluation

FEASIBILITY RESULTS

- Recruitment targets were narrowly missed; <u>Cohort</u>: 59/60 (98.3%) <u>RCT</u>: 57/60 (93.5%)
- Retention rates at 12 months were ~ 85% in both groups (Figure 3)
- % data completeness for outcomes at baseline ranged from 42.3-100% and at 12 month follow up from 19.2-85.2% (Table 2)


Figure 3: PACE-HD CONSORT flow chart

17 Vie	2/14/042
Participants screened at ENROLL-HD sites	Participants did
n=274	not meet inclusion
11=4/4	criteria=70

- \mathbf{c}
- Conducting large-scale, longer-term evaluations of physical activity is challenging, not least due to competitive recruitment to high priority pharmacological trials
- Exploring ways to use existing data for evaluation of non-drug interventions is a priority
- We investigated the feasibility of nesting randomized controlled trial of a physical activity coaching intervention within Enroll-HD, an established HD cohort study

METHODS

- Study design: A "Trial within a Cohort" (TWiC) to compare a physical activity intervention with usual activity in individuals with early-mid stage HD
- Recruitment target: 120 participants across seven Enroll-HD (<u>https://enroll-hd.org/</u>) sites
- Three sites served as observational sites only, four sites conducted the nested RCT
- Inclusion criteria: 1) confirmed genetic diagnosis of HD
 - 2) over 18 years of age
 - 3) currently registered as a participant in Enroll-HD
 - 4) ≤ stage 2 disease status (i.e. total functional capacity 7-13)
- The primary outcome was feasibility defined by recruitment, retention, data completeness, adherence, fidelity and acceptability
- Demographic and disease-specific measures were obtained through linkage with the Enroll-HD dataset
- Exploration of effect estimates for long-term physical activity in HD compared to usual activity were secondary outcomes
- Propensity score (PS) weighting methods were used in an attempt to achieve balance in

Table 2: Data completeness in the RCT and cohort

							100
100	100	100	62	67	81	Huntington's Disease Rating Scale: Total Motor Score	100
100	100	100	62	70	81	Total functional capacity (TFC)	

fitness, physical endurance and disease status between individuals in the RCT intervention group and those in the observational cohort in the absence of randomisation

For further information (via QR code) on PS approach *see Markoulidakis et al. Examining the effect of exercise on the progression and severity of Huntington's disease using different covariate balancing methods and simulated data derived from the PACE-HD study.*

INTERVENTION

- PACE-HD is a theoretically informed physical activity behavioural change intervention based on knowledge developed in Exert-HD and Engage-HD
- The intervention was mapped using a logic model and consisted of 18 face-to-face, 1:1 physical therapy sessions with a qualified physical therapist over 12 months (Figure 1)
- A disease-specific workbook (available in English, German and Spanish; Figure 2) supported discussions and goal setting
- Participants decided timing, location and nature of sessions (in consultation with their therapist)
- Participants were given Fitbits (Charge 2) to be used throughout the 12-month study

Figure 1: The PACE-HD Activity Pyramid

Baseline RCT	Baseline RCT	Baseline	12 month RCT	12 month RCT	12 month			
100	100	88	69	81	71	International Physical Activity Questionnaire		
100	100	95	73	74	85	Physical fitness predicted VO2		
100	100	95	77	74	85	6min walk data		
42	44	73	19	22	37	Mean weekly step counts		
92	89	73	46	48	59	Number of times the participant stands in 30 seconds		
92	89	73	50	59	59	Timed Up and Go Test: Total time		
96	96	54	42	59	44	HAD-SIS: Inward irritability subscore		
96	96	54	42	59	42	HAD-SIS: Outward irritability subscore		
96	96	54	42	59	42	HAD-SIS: Irritability subscore		
96	96	54	42	59	42	HAD-SIS: Depression subscore		
96	96	54	42	59	42	HAD-SIS: Anxiety subscore		
100	100	97	85	85	85	HD-Pro Triad		
88	89	80	46	67	59	SF12: Mental Component (MCS)		
88	89	80	46	67	59	SF12: Physical Component (PCS)		
88	93	98	58	63	78	Trail making Test: Part B: total correct		
96	100	98	58	67	78	Trail making Test: Part A: total correct		
96	93	97	62	70	78	Stroop Interference: Total correct		
96	100	98	62	70	80	Stroop Word Reading: Total correct		
96	100	100	62	70	80	Stroop Colour Naming: Total correct		
88	100	98	62	70	80	Symbol Digit Modality Test: Total correct	20	
96	100	98	62	70	80	Verbal and Category Fluency: Total correct		
100	100	100	62	70	81	PBA Executive function score		
100	100	100	62	70	81	PBA Depression score	40	
100	100	100	62	70	81	PBA Apathy score		
100	100	100	62	70	81	PBA Psychosis score	60	
100	100	100	62	70	81	PBA Irritability aggression score		
100	100	100	62	70	81	Subject's independence in %		
100	96	100	62	67	81	Functional assessment score		

PROPENSITY SCORE ANALYSES

Imbalances in pretreatment confounders (baseline fitness and endurance or disease status) for the cohort and the RCT could not be addressed via propensity score weighting, likely due to small sample sizes (Table 3).

Table 3: Mean [95% CI] of difference for adjusted and unadjusted models and weighting algorithms

Model	Observation- Cohort-Intervention Intervention (unadjusted) (adjusted)		Control-Intervention	Weighting Algorithm		
/O2max_12m \sim treat + cUHDRS + 6' Walk + VO2max	178.31[11.86, 344.77]	145.38 [-11.02 , 301.77]	38.19 [-140.2 , 216.59]	GBM KS	0.20	
					0.00	

RESULTS

- 116 participants (56 😨) from the USA, Spain and Germany were recruited (see Table 1)
- Figure 3 describes the flow of participants in both the RCT and the cohort
- There were imbalances at baseline for gender, age, BMI and CAG (as assessed by Standardized Mean Difference (SMD) (*a* – SMD >0.1) and Kolmogorov-Smirnov (KS) statistic (*b* – KS>0.1)) both in the control and the observational cohort when compared with the intervention group (Table 1)

Table 1: Characteristics of all participants at baseline

	RCT interventio (n=26)	Cohort (n=59)		
Gender %F	15 (57.7%)	16 (59.3%)	25 (42.4%) ^{<i>a,b</i>}	
Mean (SD) age at last Enroll visit (years)	54.5 (10.5)	57.1 (9.8) ^{a,k}	, 52.4 (11.1) ^{<i>a,b</i>}	
Mean (SD) BMI (kg/m2)	25.7 (3.3)	25.5 (4.6) ^b	25.5 (4.5) ^{<i>a,b</i>}	
Mean (SD) CAG repeat length	43.0 (3.0)	42.5 (2.7) ^{<i>a,b</i>}	, 43.1 (2.4) ^{<i>a,b</i>}	

- There was a promising positive intervention effect on VO2max (mean [95% CI] of difference 145.38 [-11.02, 301.77] and cUHDRS 0.60 [-0.16, 1.36] respectively. It was however not possible to achieve adequate balance across any of the groups (indicated when KS values are below 0.1)
- The best performing algorithm between the cohort and intervention and intervention and control groups reported maximum KS values of 0.18/0.19
- A significantly larger sample size would be required to yield a more precise and measurable effect of physical activity on the progression of HD

CONCLUSION

- Recruitment targets were narrowly missed
- Retention at 12 months was excellent
- Pre-specified criteria for the defined minimum dataset collection targets were met
- The TWiC design, with linkage to Enroll-HD, is feasible for long-term physical activity evaluation in HD provided sample size requirements can be achieved

PACE-HD principal investigators

Teresa Montojo. Neurology Department, Fundación Jiménez Díaz, Madrid, Spain; Jesus Miguel Ruiz Idiago. Neuropsychiatry Unit. Hospital Mare de Dèu de la Mercè. Barcelona. Spain: Department of Psychiatry and Forensic Medicine. Universitat Autónoma de Barcelona. Spain; Julie Hershberg. University of Southern California, Division of Biokinesiology and Physical Therapy. Re+active physical therapy & wellness. Los Angeles, California, USA; Yvette Bordelon. Department of Neurology, University of California, USA; Karen Marder, MD, MPH, Columbia University Irving Medical Center, New York, NY, USA; Lori Quinn, PT, EdD, FAPTA, Teachers College, Columbia University, New York, NY, USA; Ralf Reilmann. George-Huntington-Institute and Institute for Clinical Radiology, University Hospital Aachen, Germany; Bernhard Landwehrmeyer. University Hospital Ulm, Germany. Acknowledgements. We would like to acknowledge Andreas Markoulidakis, PhD student for his contributions to the exploratory propensity score analyses undertaken in PACE-HD. Funder acknowledgement to Jacques and Gloria Gossweiler Foundation.