DECIPHERING THE NEUROPROTECTIVE ROLE OF SIGMA1 RECEPTOR, AN IMPORTANT FUNCTION TO OVERCOME THE SYMPTOMS OF NEURODEGENERATIVE DISORDERS

Institute of Molecular Biology and Pathology (IBPM) National Research Council of Italy (CNR)

Gianmarco Pascarella **David Sasah Staid** Gianni Colotti Veronica Morea Andrea Ilari

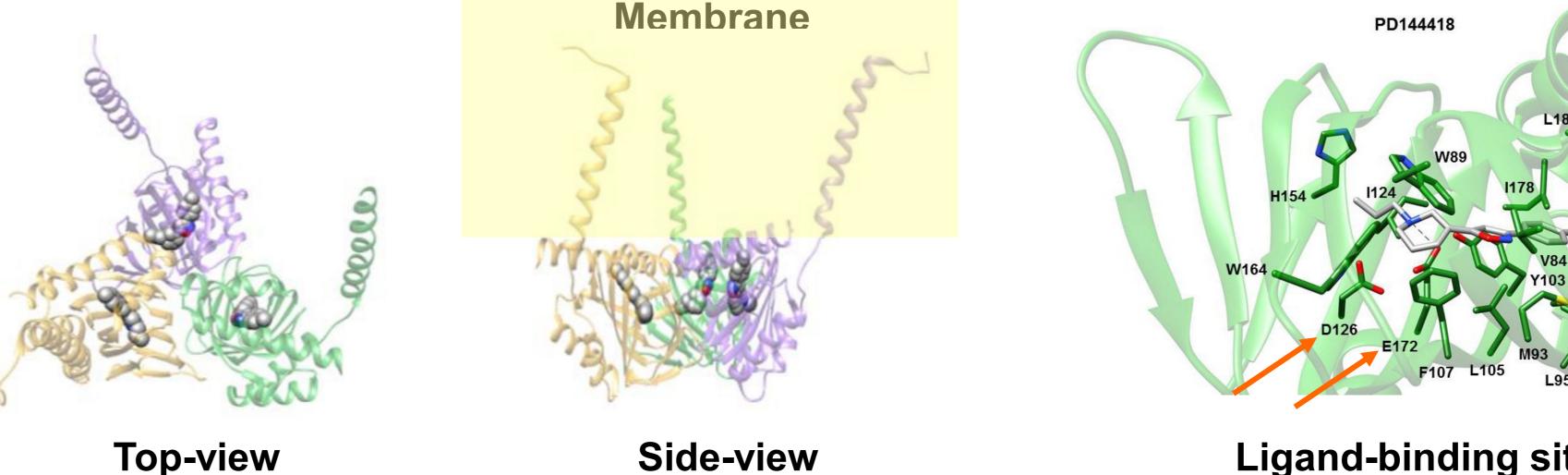
Funding: Ricerca Finalizzata MoH (2016)

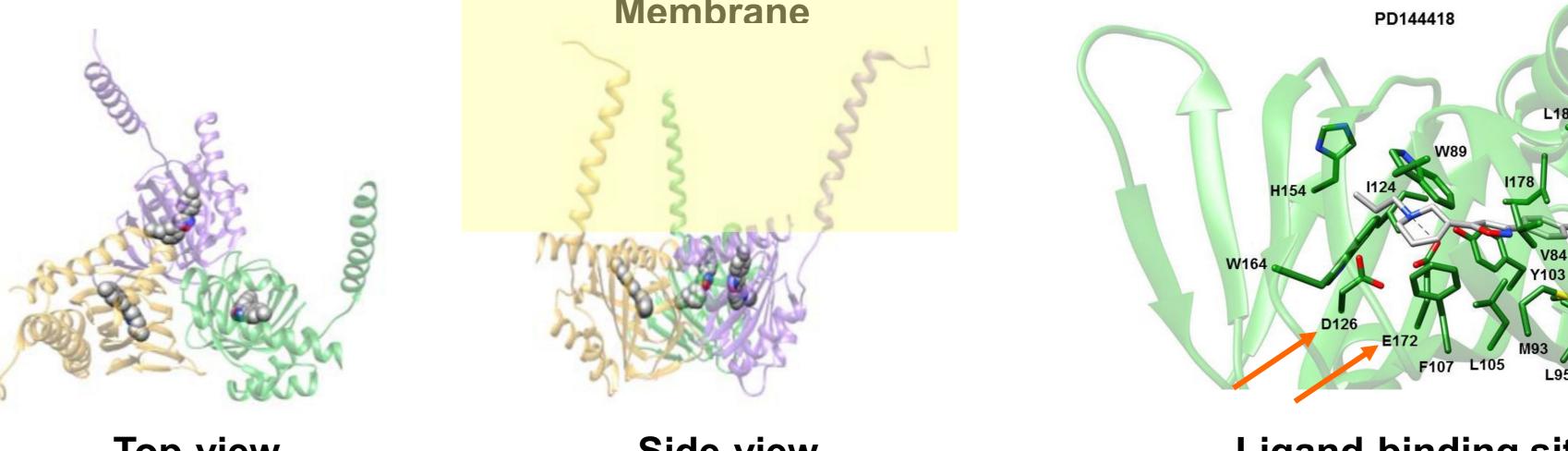
Department of Biochemical Sciences "A. Rossi Fanelli" "Sapienza" University of Rome

Theo Battista Annarita Fiorillo

Dipartimento di Scienze Fisiche e Chimiche Università degli Studi dell'Aquila, Italy

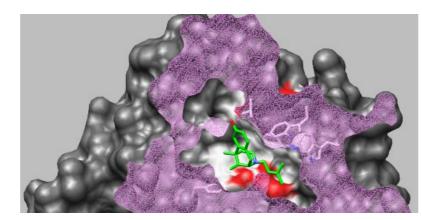
Daniele Narzi Leonardo Guidoni **Protein Facility Structural Biology Lab**


IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo



Alessia Casamassa Sergio Fanelli Angelo Luigi Vescovi Jessica Rosati Ferdinando Squitieri

Barbara Giabbai Marta Stefania Semrau Paola Storici


- expressed in the central nervous system
- agonists are neuroprotective
- anchored to cell and ER membranes
- experimentally determined **3D-structure**
 - X-ray crystallography
 - Resolution: 2.51-3.20 Å
 - Complexes: 1 agonist, 4 antagonists
 - No variations in the **ligand-binding region**

Ligand-binding site

Identification of σ1R-binding neuroprotective drugs for HD therapy by Drug "repositioning" or "repurposing"

1) *In silico* analysis: **Prediction of drug-\sigma1R interaction**

- a. Virtual Screening (VS)
 - σ1R 3D structure: PDB ID: 5HK1 (best resolution)
 - Ligands: ZINC FDA-approved drugs library
 - Software: Autodock VINA
 - Result: ranking by predicted affinity
- b. Computational docking
 - Ligands: 20 drugs with highest predicted affinity

σ1R ligand binding site: small and fully buried => suitable for VS and docking

FDA Name	ZINC ID	KD (µM)	Energy (kcal/mol)					
			VINA	ATD1	ATD2			
Flibanserin	52716421	4.9 ± 1.1	-11.6	-9.4	-10.0			
lloperidone	01548097	5.1 ± 0.6	-11.7	-10.2	-10.4			
Linagliptin	03820029	9.6 ± 1.0	-11.7	-12.4	-12.4			
Pridopidine	22063703	14.8 ± 1.0	-8.7					
Nilotinih	06716057	220 ± 30	123	78	05			

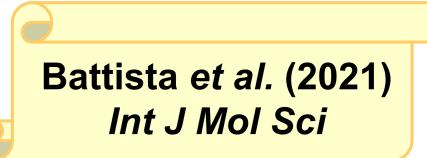
Assessment of direct drug- σ 1R interaction

- Software: Autodock Tools
 - \succ Result: predicted σ 1R-drug complex structure and affinity
- c. Visual inspection
 - 20 drug-σ1R predicted structures
 - Software: PyMol, InsightII
 - Result: chosen 6 drugs based on potential interactions and clinical activity
 - **Iloperidone**, **Paliperidone**: **Schizophrenia**
 - Vilazadone:
 - Flibanserin:
 - Nilotinib:
 - Linagliptin:
- Depression **Sexual desire hypoactivity Chronic myeloid leukemia Diabetes mellitus type 2**

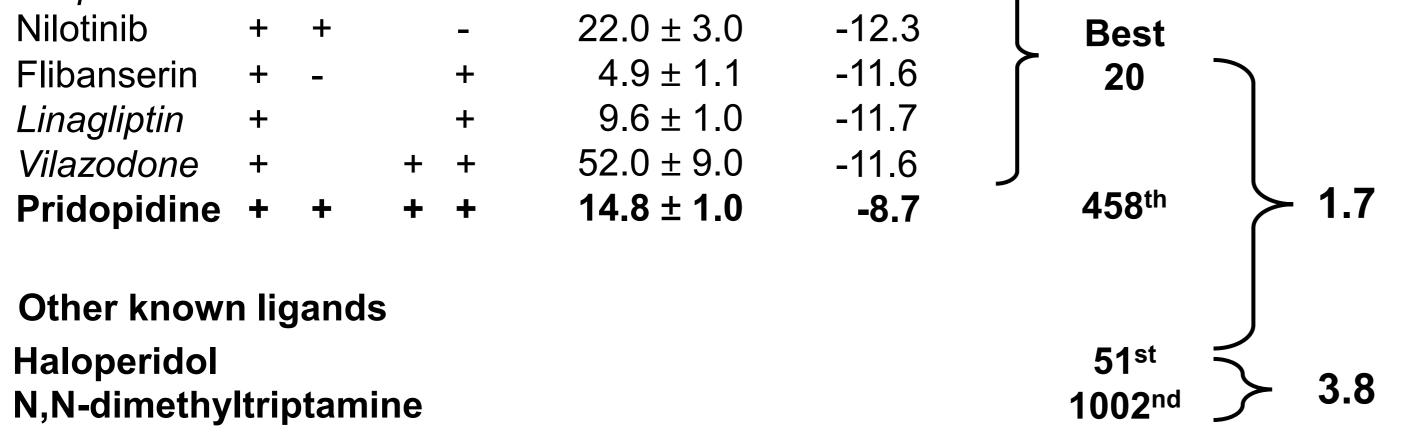
3) HD patients' skin fibroblasts: Assessment of drug agonist effect on cells

HD (patient) and CTRL (healthy subject) fibroblasts growth					In vitro In silico (SPR) (VS)			VINA ranking (*)	Energy difference (Kcal/mol)	
[1 µM]	H 1	ID 2	C ⁻ 1	TRL 2	KD (μM)	Energy (kcal/mol)				
lloperidone Paliperidone		+ +	_	+	5.1 ± 0.6 46.0 ± 21	-11.7 -12.2	٦			

	00710957	22.0 ± 3.0	-12.0	-7.0	-3.5
Paliperidone	04214700	46.0 ± 21	-12.2	-11.5	-11.9
Vilazodone	01542113	52.0 ± 9.0	-11.6	-9.2	-9.4


- ightarrow Result: All 6 selected drugs bind purified $\sigma 1R$ with affinity ~ pridopidine
- *: Surface Plasmon Resonance

2) *In vitro* analysis by SPR(*):


- **: Phase III clinical trials
- **ATD1:** lowest energy pose of largest Autodock cluster **ATD2:** lowest energy pose of lowest energy Autodock cluster

Conclusions

- > The **Drug Repositioning** procedure identified **6 FDA-approved** drugs able to improve HD fibroblasts phenotype
- > The 6 drugs are directly amenable to **clinical use** and can be used as **leads** for implemented therapeutics

Current work

Result: <u>HD fibroblasts</u> growth and growth rate are increased (both or one patient) by all 6 selected drugs after 72 hours (=> all 6 are agonists) and cell death is decreased by <u>3 drugs (in *italic*)</u>

*: Both have 43 CAG repeats in *Htt* and are at the same initial HD stage **: VINA/ATD Energy differences ≤ 3 kcal/mol are not significant

- **Ranking improvement** by *in silico* methods (e.g., by Artificial) Intelligence methods)
- Medium-scale (i.e., tens of compounds) implementation of *in vitro* methods
- Additional HD cell models: fibroblasts; iPSC-derived neurospheres and **neurons**
- Investigation of drug activity mechanism (e.g., σ1R antagonists; involved pathways)
- Identification of the endogenous σ 1R ligand(s) by Virtual Screening of large (tens of thousands) compound library
- Investigation of **σ1R ligand entrance mechanism** by Molecular Dynamics simulations